试说明111…1(n个1)55…5(n个5)6是一个完全平方数.试说明111…1(n个1)55…5(n个5)6是一个完全平方数解答过程啊!

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 15:55:41
试说明111…1(n个1)55…5(n个5)6是一个完全平方数.试说明111…1(n个1)55…5(n个5)6是一个完全平方数解答过程啊!

试说明111…1(n个1)55…5(n个5)6是一个完全平方数.试说明111…1(n个1)55…5(n个5)6是一个完全平方数解答过程啊!
试说明111…1(n个1)55…5(n个5)6是一个完全平方数.
试说明111…1(n个1)55…5(n个5)6是一个完全平方数解答过程啊!

试说明111…1(n个1)55…5(n个5)6是一个完全平方数.试说明111…1(n个1)55…5(n个5)6是一个完全平方数解答过程啊!
完全平方数
九章出版社提供
(一)完全平方数的性质
一个数如果是另一个整数的完全平方,那麼我们就称这个数为完全平方数,也叫做平方数.例如:
0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,…
观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识.下面我们来研究完全平方数的一些常用性质:
性质1:完全平方数的末位数只能是0,1,4,5,6,9.
性质2:奇数的平方的个位数字为奇数,十位数字为偶数.
证明 奇数必为下列五种形式之一:
10a+1, 10a+3, 10a+5, 10a+7, 10a+9
分别平方后,得
(10a+1)=100+20a+1=20a(5a+1)+1
(10a+3)=100+60a+9=20a(5a+3)+9
(10a+5)=100+100a+25=20 (5a+5a+1)+5
(10a+7)=100+140a+49=20 (5a+7a+2)+9
(10a+9)=100+180a+81=20 (5a+9a+4)+1
综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数.
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.
证明 已知=10k+6,证明k为奇数.因为的个位数为6,所以m的个位数为4或6,於是可设m=10n+4或10n+6.则
10k+6=(10n+4)=100+(8n+1)x10+6
或 10k+6=(10n+6)=100+(12n+3)x10+6
即 k=10+8n+1=2(5+4n)+1
或 k=10+12n+3=2(5+6n)+3
∴ k为奇数.
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那麼这个数一定不是完全平方数.
推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数.
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1.
这是因为 (2k+1)=4k(k+1)+1
(2k)=4
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型.
在性质4的证明中,由k(k+1)一定为偶数可得到(2k+1)是8n+1型的数;由为奇数或偶数可得(2k)为8n型或8n+4型的数.
性质6:平方数的形式必为下列两种之一:3k,3k+1.
因为自然数被3除按余数的不同可以分为三类:3m,3m+1, 3m+2.平方后,分别得
(3m)=9=3k
(3m+1)=9+6m+1=3k+1
(3m+2)=9+12m+4=3k+1
同理可以得到:
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型.
性质8:平方数的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9.
除了上面关於个位数,十位数和余数的性质之外,还可研究完全平方数各位数字之和.例如,256它的各位数字相加为2+5+6=13,13叫做256的各位数字和.如果再把13的各位数字相加:1+3=4,4也可以叫做256的各位数字的和.下面我们提到的一个数的各位数字之和是指把它的各位数字相加,如果得到的数字之和不是一位数,就把所得的数字再相加,直到成为一位数为止.我们可以得到下面的命题:
一个数的数字和等於这个数被9除的余数.
下面以四位数为例来说明这个命题.
设四位数为,则
= 1000a+100b+10c+d
= 999a+99b+9c+(a+b+c+d)
= 9(111a+11b+c)+(a+b+c+d)
显然,a+b+c+d是四位数被9除的余数.
对於n位数,也可以仿此法予以证明.
关於完全平方数的数字和有下面的性质:
性质9:完全平方数的数字之和只能是0,1,4,7,9.
证明 因为一个整数被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4这几种形式,而
(9k)=9(9)+0
(9k±1)=9(9±2k)+1
(9k±2)=9(9±4k)+4
(9k±3)=9(9±6k)+9
(9k±4)=9(9±8k+1)+7
除了以上几条性质以外,还有下列重要性质:
性质10:为完全平方数的充要条件是b为完全平方数.
证明 充分性:设b为平方数,则
==(ac)
必要性:若为完全平方数,=,则
性质11:如果质数p能整除a,但不能整除a,则a不是完全平方数.
证明 由题设可知,a有质因数p,但无因数,可知a分解成标准式时,p的次方为1,而完全平方数分解成标准式时,各质因数的次方均为偶数,可见a不是完全平方数.
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若
<k<(n+1)
则k一定不是完全平方数.
性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身).
(二)重要结论
1.个位数是2,3,7,8的整数一定不是完全平方数;
2.个位数和十位数都是奇数的整数一定不是完全平方数;
3.个位数是6,十位数是偶数的整数一定不是完全平方数;
4.形如3n+2型的整数一定不是完全平方数;
5.形如4n+2和4n+3型的整数一定不是完全平方数;
6.形如5n±2型的整数一定不是完全平方数;
7.形如8n+2, 8n+3, 8n+5, 8n+6,8n+7型的整数一定不是完全平方数;
8.数字和是2,3,5,6,8的整数一定不是完全平方数.
(三)范例
[例1]:一个自然数减去45及加上44都仍是完全平方数,求此数.
设此自然数为x,依题意可得
(m,n为自然数)
(2)-(1)可得
∴n>m
(
但89为质数,它的正因数只能是1与89,於是.解之,得n=45.代入(2)得.故所求的自然数是1981.
[例2]:求证:四个连续的整数的积加上1,等於一个奇数的平方(1954年基辅数学竞赛题).
分析 设四个连续的整数为,其中n为整数.欲证
是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可.
证明 设这四个整数之积加上1为m,则





而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数.这就证明了m是一个奇数的平方.
[例3]:求证:11,111,1111,这串数中没有完全平方数(1972年基辅数学竞赛题).
分析 形如的数若是完全平方数,必是末位为1或9的数的平方,即

在两端同时减去1之后即可推出矛盾.
证明 若,则
因为左端为奇数,右端为偶数,所以左右两端不相等.
若,则
因为左端为奇数,右端为偶数,所以左右两端不相等.
综上所述,不可能是完全平方数.
另证 由为奇数知,若它为完全平方数,则只能是奇数的平方.但已证过,奇数的平方其十位数字必是偶数,而十位上的数字为1,所以不是完全平方数.
[例4]:试证数列49,4489,444889, 的每一项都是完全平方数.
证明
=
=++1
=4+8+1
=4()(9+1)+8+1
=36 ()+12+1
=(6+1)
即为完全平方数.
[例5]:用300个2和若干个0组成的整数有没有可能是完全平方数?
设由300个2和若干个0组成的数为A,则其数字和为600
3|600 ∴3|A
此数有3的因数,故9|A.但9|600,∴矛盾.故不可能有完全平方数.
[例6]:试求一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同(1999小学数学世界邀请赛试题).
设此数为
此数为完全平方,则必须是11的倍数.因此11|a + b,而a,b为0,1,2,9,故共有(2,9), (3,8), (4,7),(9,2)等8组可能.
直接验算,可知此数为7744=88.
[例7]:求满足下列条件的所有自然数:
(1)它是四位数.
(2)被22除余数为5.
(3)它是完全平方数.
设,其中n,N为自然数,可知N为奇数.
11|N - 4或11|N + 4

k = 1
k = 2
k = 3
k = 4
k = 5
所以此自然数为1369, 2601, 3481, 5329, 6561, 9025.
[例8]:甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去.为了平均分配,甲应该补给乙多少元(第2届“祖冲之杯”初中数学邀请赛试题)?
n头羊的总价为元,由题意知元中含有奇数个10元,即完全平方数的十位数字是奇数.如果完全平方数的十位数字是奇数,则它的个位数字一定是6.所以,的末位数字为6,即乙最后拿的是6元,从而为平均分配,甲应补给乙2元.
[例9]:矩形四边的长度都是小於10的整数(单位:公分),这四个长度数可构成一个四位数,这个四位数的千位数字与百位数字相同,并且这四位数是一个完全平方数,求这个矩形的面积(1986年缙云杯初二数学竞赛题).
设矩形的边长为x,y,则四位数
∵N是完全平方数,11为质数 ∴x+y能被11整除.
又 ,得x+y=11.
∴∴9x+1是一个完全平方数,而,验算知x=7满足条件.又由x+y=11得.
[例10]:求一个四位数,使它等

试说明111…1(n个1)55…5(n个5)6是一个完全平方数.试说明111…1(n个1)55…5(n个5)6是一个完全平方数解答过程啊! 试说明111…1155…56是完全平方数(n个1)(n-1个5)最好用科学计数法求解 还是观察归纳总结的题目1、设n为自然数,具有下列形式111……1155……55(n个1,n个5)的数是不是两个连续奇数的积,说明理由.2、化简33……3*33……33+199……9(n个3,n个3,n个9) 并说明在结果中 说明111…11(N个1)555…5555(N个5)6 是个完全平方数N为任意数,所以,不能采用将N假定为实数的方法来做 不好意思哈,之前打错咯题,现在改正过来咯。 题目为:说明111…11(N个1)555…5 设n为自然数,具有下列形式111…11555…55的数是不是两个连续奇数数字n个1 n个5 数学难题有没有人会啊0 - 离问题结束还有 14 天 6 小时试说明111…555…6是一个 平方数 (N个1)(n-1)个5 0 - 离问题结束还有 14 天 6 小时试说明111…555…6是一个 平方数 (N个1)(n-1)个5 某水果公司急 设n为自然数,具有下列形式 11...11(n个1) 55...55(n个5) 的数是不是两个连续奇数的积,说明理由. 数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n 试证明2n个111……1+n个222……2是一个完全平方数 试说明数111 ……1222……2 是两个相邻正整数的乘积111……1有n个,222……2也有n个 求1N、2N、3N ……..100N.2055N,这101个力的合力最小值 在1,2,3…n这n个自然数中,已知共有p个质数,q个合数,k个积数,m个偶数,则(q-m)(p-k)=( )说明思路和过程 (下面两个是一道题呦!) (1)设n为自然数,具有下列形式 11...11(n个1) 55...(1)设n为自然数,具有下列形式 11...11(n个1) 55...55(n个5) 的数是不是两个连续奇数的积,说明理由.(2)化简33...3(n个 n个自然数:1,2,3…,n,其平方和可用公式n(n+1)(2n+1)/6来计算,试计算11*11+12*12+ 第一题应用归纳推理猜测根号{[(111…1)(2n个)]-[(222…2)(n个)]}的值(n?N+) 第二题设f(n)=n^2+n...第一题应用归纳推理猜测根号{[(111…1)(2n个)]-[(222…2)(n个)]}的值(n?N+) 第二题设f(n)=n^2+ 求44…488…89的算术平方根,n个4,n-1个8 证明:111…111(2n个1)-222…222(n个2)=333…333(n个3)111…111(2n个1)-222…222(n个2)=333…333(n个3)是在2倍根号下 读入1 个正整数 n(n