求解一道高考数学选择题: 高为√2/4的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为A√2/4 B √2/2 C 1 D √2麻烦

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 01:59:58
求解一道高考数学选择题: 高为√2/4的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为A√2/4        B √2/2     C 1        D √2麻烦

求解一道高考数学选择题: 高为√2/4的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为A√2/4 B √2/2 C 1 D √2麻烦
求解一道高考数学选择题: 高为√2/4的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一
球面上,则底面ABCD的中心与顶点S之间的距离为
A√2/4 B √2/2 C 1 D √2
麻烦写出详细过程,谢谢

求解一道高考数学选择题: 高为√2/4的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为A√2/4 B √2/2 C 1 D √2麻烦
令AC与BD的交点为E,过S作平面K∥面ABCD,再过E作EF⊥平面K交平面K于F.
由平行平面间处处等距离,可知:EF=S到面ABCD的距离=√2/4.
令S-ABCD的外接球球心为O.
一、证明:点O在EF的延长线上.
1、点O显然不与F重合.
  若重合,则由勾股定理,有:FA^2=EF^2+EA^2.
  而FA=1,容易算出:EA=AC/2=√2AB/2=√2/2,得:EF=√[1-(√2/2)^2]=√2/2.
  这与EF=√2/4矛盾.
2、点O若在FE的延长线上,则由勾股定理,有:OA^2=OE^2+EA^2.
  而OA=1,EA=√2/2,∴OE=√[1-(√2/2)^2]=√2/2.
  ∴OE+EF=√2/2+√2/4=3√2/4>1,即OF>1,这说明点F在球O外面,自然是不合理的.
由上述的1、2,得:点O在EF的延长线上.
二、证明:F是OE的中点.
由勾股定理,有:OA^2=OE^2+EA^2.
而OA=1,EA=√2/2,∴OE=√[1-(√2/2)^2]=√2/2,又EF=√2/4.
∴点F是OE的中点.
三、计算S到ABCD中心的距离.
连结SF.
∵EF⊥平面K,∴SF⊥EF,又OF=EF,∴S在OE的垂直平分线上,∴SE=SO=1.
∵ABCD是正方形,且E是AC与BD的交点,∴E是ABCD的中心,
∴S到ABCD中心的距离为1.