抛物线x平方=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=a向量FB(a>0)过A、B两点分别作抛物线的切线,设其交点为M.1)证明向量FM*向量AB为定值.2)设三角形ABM的面积为S,写出S=f(a)的表达

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/02 11:42:30
抛物线x平方=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=a向量FB(a>0)过A、B两点分别作抛物线的切线,设其交点为M.1)证明向量FM*向量AB为定值.2)设三角形ABM的面积为S,写出S=f(a)的表达

抛物线x平方=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=a向量FB(a>0)过A、B两点分别作抛物线的切线,设其交点为M.1)证明向量FM*向量AB为定值.2)设三角形ABM的面积为S,写出S=f(a)的表达
抛物线x平方=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=a向量FB(a>0)过A、B两点分别作抛物线的切线,设其交点为M.1)证明向量FM*向量AB为定值.2)设三角形ABM的面积为S,写出S=f(a)的表达式,并求S的最小值

抛物线x平方=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=a向量FB(a>0)过A、B两点分别作抛物线的切线,设其交点为M.1)证明向量FM*向量AB为定值.2)设三角形ABM的面积为S,写出S=f(a)的表达
1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=-1,
显然AB斜率存在且过F(0,1)
设其直线方程为y=kx+1,联立4y=x^2消去y得:x^2-4kx-4=0,
判别式△=16(k^2+1)>0.
于是x1+x2=4k,x1x2=-4,
曲线4y=x^2上任意一点斜率为y'=x/2,则易得切线AM,BM方程分别为y=(1/2)x1(x-x1)+y1,y=(1/2)x2(x-x2)+y2,其中4y1=x1^2,4y2=x2^2,联立方程易解得交点M坐标,xo=(x1+x2)/2=2k,yo=(x1x2)/4=-1,即M((x1+x2)/2,-1)
从而,向量FM=((x1+x2)/2,-2),向量AB(x2-x1,y2-y1)
向量FM*向量AB=(x1+x2)(x2-x1)/2-2(y2-y1)=(x2^2-x1^2)/2-2[(x2^2-x1^2)/4]=0,(定值)命题得证.这就说明AB⊥FM.
2)因为向量AF=a向量FB,由定比分点公式得
xF=(x1+ax2)/(1+a)=0,得x1=-ax2,那么x1+x2=(1-a)x2=4k,
平方即有
(1-a)^2x2^2=16k^2,
又x1x2=-ax2^2=-4,两式相比消去x1,x2得4k^2=(1-a)^2/a
弦长AB=[(1+k^2)^(1/2)][(x1+x2)^2-4x1x2]^(1/2)
=[(1+k^2)^(1/2)][16k^2+16]^(1/2)=4(1+k^2)=4+4k^2
再注意到AB⊥FM,M到AB距离为d=MF=yF-yM=2.
于是△ABM面积可表示为
S△ABM=(1/2)*d*|AB|
=|AB|
=4+4k^2
=4+(1-a)^2/a
=4+a+1/a-2
=a+1/a+2
得到S=f(a)=a+1/a+2
>=2[a*(1/a)]+2
=4,(当仅当a=1/a,a>0,即a=1取等号,此时k=0)
所以S的最小值为4.